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In this paper we investigate spectral matrices, i.e., matrices with equal spectral and 
numerical radii. Various characterizations and properties of these matrices are given. 

1. INTRODUCTION 

Let A be an n-square complex matrix with eigenvalues 4 ,  . . ., A,,, and let 

be the spectral radius of A. Let 
r(A) = max I(Ax, x )  l 

1x1 = 1 

be the numerical radius of A, and 

llA ll = max 1.44 
1x1 = 1 

the spectral norm of A. Here (x ,  y) is the unitary inner product of the vectors 
x and y, and 1x1 = (x ,  x)*. 

It is well known that 

p(A) < r(A) < llAll < 2 4 4 ) .  (1.4) 
In this paper we investigate matrices for which 

~ ( 4  = r ( 4 -  ( 1 . 9  
Following Halmos ([3] p. 1 13, we call matrices which satisfy ( 1 . 9 ,  spectral 
matrices. Our main purpose is to characterize the spectral matrices and h d  
some of their properties. 

Before turning to some new results, we recall a few known results which we 
shall use later on. It is known that 
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r(A) = 0 if and only if A = 0. (1.6) 
r(aA) = Ialr(A), for every scalar a. (1.7) 

r(A + B) < r(A) + r(B). (1.8) 
However, the numerical radius is not a matrix-norm, since in general it is 
not true that r(AB) ,< r(A) r(B) even if A and B are powers of the same 
matrix [8]. On the other hand, we always have the Halmos inequality 

This power inequality was conjectured by Halmos and proved by Berger. 
The proof was simplified by Pearcy [8]. Generalizations of the power 
inequality were given by Kato [4], and by Berger and Stampfli [I]. 

It is also known that 
r(A, @ A,) = max r(Aj). 

l < j < m  
(1.10) 

Another concept associated with the numerical radius of a matrix is the 
numerical range F(A), defined by 

F(A) = {(Ax, x), 1x1 = 1 }. (1.11) 

The numerical range, known also as the field of values of A, is a convex set 
in the complex plane. If U is a unitary transformation, then 

If M is any principle sub-matrix of A, then 
F < F A ,  r(M) < r(A). (1.13) 

For a 2 x 2 matrix it is known that F(A) is an ellipse whose foci are the 
eigenvalues 1, and A, of A. In particular, if A is of the form 

then lu1/2 is the semi-minor axis of the ellipse F(A). We shall refer to this 
result as the Elliptic Range Theorem (see for example 161). 

Most of the above mentioned results can be found in 131. A survey of 
properties of the numerical range and the numerical radius, some of which 
were proven by Parker, is given in [A. 

The investigation of spectral matrices is motivated by stability problems 
related to finite difference schemes, where the uniform boundedness of 
1 1 ~ ~ 1 1 ,  k = 1,2,3, . . . plays a central role. In general we have 

Therefore, p(A) ,< 1 is a necessary condition for uniform boundedness of 
the powers of A. However, if A is spectral, this condition is sufficient as well, 
and implies that I I A ~ I I  < 2 for all k. Such an idea was applied &st by Lax 
and Wendroff [5].  
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SPECTRAL MATRICES 3 19 

2. STRUCTURE-CHARACTERIZATION OF SPECTRAL MATRICES 

Before we start characterizing the class of spectral matrices we note that this 
class is wider than the class of normal matrices. For, if A is normal, then it 
is unitarily similar to a diagonal matrix, and by (1.10) and (1.12) 

r(A) = maxlAjl = p(A), (2.1) 
so A is spectral. However, not every spectral matrix is normal. To see that, 
take the non-normal matrix 

We have p(A) = 1, where by (1.10) and the Elliptic Range Theorem r(A)  = 1 
too. Thus for n 2 3 the class of normal matrices is a proper subclass of the 
class of spectral matrices. 

The example just given shows that the spectrality of a direct sum does not 
impIy the spectrality of each of the summands. On the other hand, it is clear 
that a direct sum of spectral matrices is spectral. 

Let us now order the eigenvalues of an arbitrary n-square matrix A such 
that 

p(A) = lA1l = ... = & I  > IAS+iI 2 . * a 2 IU, (2.3) 
where s = s(A)  is the number of eigenvalues of A on the spectral circle 
lzl = ~ ( 4 .  
THEOREM 1 The matrix A is spectral if and only if A is unitarily similar to a 
triangular matrix of the form 

Proof It is known that A is unitarily similar to a triangular matrix T ,  
where the eigenvalues Aj,  are ordered along its diagonal as in (2.3). Since 
p(A) = p(T) and r(A) = r(T),  we may assume that A is already triangular. 

Suppose that A is spectral and take j and k with 1 < j < s and j < k < n. 
By (1.13) 
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320 M. GOLDBWG, E. TADMOR AND G. ZWAS 

and therefore 

Using the Elliptic Range Theorem, it is clear that (2.7) is satisfied if and only 
if akj = 0. Thus A = A + B as in (2.4). Now by (1.10) 

P(A) = r(A) = max{p(A), W ) ,  
hence (2.5) holds. 

If (2.4) and (2.5) are satisfied, then by (1.10) 

Since A = diag(l,, . . ., As) we have p(A) = r(A), and by (2.5) p(A) = r(A). 
Thus A is spectral. 

COROLLARY 1 If s = s(A) 3 n - 1, then A is spectral if and only if A is 
normal. 

Proof Normality implies spectrality. Lf A is spectral and s 2 n - 1, 
then by Theorem 1 it is unitarily similar to a diagonal matrix and A is normal. 

In particular we obtain the following: 

COROLLARY 2 u n  = 2, then A is a spectral ifand only if it is normal. 
Corollary 2 follows also directly from the Elliptic Range Theorem. For if 

A is not normal then, without restriction, it is of the form (1.14) with o # 0. 
Therefore, the ellipse F(A) includes points z with r(A) 3 lzl > max{lA,l, 
141) = p(A), and A is not spectral. 

For A = [aij], denote A +  = [laijl]. By the definition of the numerical 
radius we h d  that 

r(A+) 2 r(A). (2.10) 
Therefore, Theorem 1 yields the following: 

COROLLARY 3 Ifs(A) = n - 2, then a suficient condition for A to be spectral 
is that A is unitarily similar to a matrix of the form (2.4), where 

Proof In order to satisfy (2.5), it is sufficient, by (2.10), to require that 

By the Elliptic Range Theorem, (2.13) means that the circle lzl = p(A) 
contains the ellipse with the non-negative foci \A,-, 1, \An( ,  and minor axis (PI. 
This clearly holds if and only if (2.12) is satisfied. 

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 1
2:

37
 1

0 
N

ov
em

be
r 

20
17

 



SPECTRAL MATRICES 32 1 

In the case s(A) = n - 2 we remark that if arg(4-,) = arg(&), then (2.12) 
is also necessary for the spectrality of A. However, for general 4-, and A,,, 
finding a condition on the size of in (2.11) which is necessary as well as 
suEcient for the spectrality of A, involves the solution of a general quadric 
equation. 

3. CRITICAL POWER CHARACTERIZATION 

We start with the following theorem. 

THEOREM 2 The matrix A is spectral if and only if 
r ( ~ k ) = r ~ ( A ) ,  k = 1 , 2 , 3  ,.... 

Proof If A is spectral, then by (1.9) 

 AS < r(A9 < rk(A) = P~(A)  = p ( ~ 7 ,  k = 1,2,3,. . ., 
and (3.1) holds. Conversely, we know that 

llAkllllk -+ ~ ( 4 .  
k+ 0, 

Therefore, if (3.1) is satisfied, then using (1.4) we have 

p(A) = p l l k ( ~ ?  < r l l k ( ~ ?  = r(A) < jlAkllllk -+ p(A), . 
k- oo 

and the theorem follows. 
Theorem 2 leads to the following conclusion. 

COROLLARY 4 If A is spectral, then any power of A is spectral. 

Proof Consider Am. By Theorem 2 we have, for all k, 

r((~m>S = r ( ~ ~ k )  = r d ( ~ )  = (P(A))~  = r k ( ~ m ) .  

Hence, using Theorem 2 once again, Am is spectral. 
Note that if a power of A is spectral, then A is not necessarily spectral. To 

see this, take 

By (1.10) and the Elliptic Range Theorem, A is not spectral. On the other 
hand, all the powers, Am = I,,-, 8 Ozx ,, m 2 2, are normal and hence 
spectral. 

Equation (3.1) of Theorem 2 provides infinitely many conditions, whose 
simuItaneous satisfaction is equivalent to spectrality. However, the finite 
nature of a matrix leads us to conjecture the existence of a finite integer 
k, = k,(A) such that the validity of (3.1) for k = k, only, is sufficient as well 
as necessary for A to be spectral. The remainder of this section deals with this 
question. 
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322 M. GOLDBERG, E. TADMOR AND G .  ZWAS 

Let m be a positive integer and let oj = e2"'jIm, 1 < j < m, be the mth 
roots of unity. The following polynomial identities are well known: 

Using these identities, which hold also when z is replaced by any square 
matrix B, Pearcy [8] proved the following lemma. 

LEMMA (Pearcy) Let B be a square matrix, m a positive integer, and x a unit 
vector. Then 

where the vectors x j  are defined by 

By the known identity 

the vectors xj  in Pearcy's Lemma, may be rewritten in the form 

From (3.7) and (3.11) we obtain (1 - B")x = (1 - wjB)xj; thus 

ojBxj = xj  + Bmx - x, 1 < j < m. (3.13) 
Now let A # 0 be an n-square matrix, m a positive integer, and x = x(m) 

a unit vector such that 

I(Amx, 4 1 = r(A"> (3.14) 
Define the matrix 

where 

1 
8 = 8(m) = - - arg(Amx, x). 

m (3.15b) 
Note that r(B) = 1; moreover B = B(m) is spectral if and only if A is 
spectral. We are now in a position to prove the following lemma. 
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SPECTRAL MATRICES 323 

LEMMA 1 Let A # 0 be a square matrix, x = x(m) a unit vector satisfying 
(3.14), B as defined by (3.15), and x,, . . ., xm the vectors in (3.12). Then 

r(A9 = rm(A) (3.16) 
if and only if 

( B ~ X  - x, xj) = 0, 1 < j < m. (3.17) 

Proof By (3.14) 

Therefore, Pearcy's Lemma implies that 

Now, if r(Am) = rm(A), then by (3.19) 

Hence the left hand side of (3.20) is real and non-negative. Since for all xj 

I(Bxj, xj)l < @)Ixj12 = Ixj12, (3.21) 

we find that 

m m 

= C I(Bxj2 xj)I < C Ixj12. (3.22) 
j=1 j= 1 

That is, 

From the left equality in (3.23) we have oj(Bxj, xi) 3 0; from the right 
equality and (3.21), I(Bxj, xi) [ = Ixj 12. Therefore 

(ojBxj, xj) = 1xj12, 1 < j < m. (3.24) 

NOW, substituting ojBxj from (3.13) into (3.24), we find that 

]xj12 = (xi + Bmx - x, xj) = lxj12 + (Bmx - x, xj), 1 < j < m, (3.25) 

and (3.17) follows. 
Conversely, if (3.17) holds, then by (3.13), 

(ojBxj, xi) = (xj + Bmx - x, xj) = lxj12 + (Bmx - X, xi) = Ixj12, 
1 < j < m. (3.26) 

Hence (3.20) is satisfied, and by (3.19) r(Am) = rm(A). 
Lemma 1 enables us to prove the following theorem. 
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324 M. GOLDBERG, E. TADMOR AND G.  ZWAS 

THEOREM 3 Let A be an n-square matrix with minimal polynomial of degree p, 
and m an integer with m 3 p. Then A is spectral i f  and only i fr(Am) = rm(A). 

Proof By Theorem 2, the spectrality of A implies r ( A 3  = rm(A). Next, 
suppose r(Am) = rm(A). I f  A = 0, then A is obviously spectral. 

Assume A # 0 and let x = x(m), B = B(m), and x,, . . ., xm be as in 
Lemma 1. By (3.12) and (3.17) we have 

m- 1 
We conclude that the polynomial P(z) = (Bmx - x, B ~ x ) ~ ' ,  which is of 

k = O  

degree m - 1 at most, has m roots, G,, . . ., G,. Hence all its coefficients 
vanish, i.e., 

(Bmx - x,  Bkx) = 0, k = 0, . . ., m - 1. (3.28) 
Clearly, the minimal polynomials of A and B are of the same degree, since 
m Z p, there exists scalars aj, 0 ,( j 6 m - 1, such that 

Therefore by (3.28) and (3.29) 

By (3.30) and by (3.28) with k = 0, we obtain 
(x, Bmx) = 1, (x, x )  = (Bmx, Bmx) = 1 ,  (3.31) 

i.e., the inner product of the unit vectors x and Bmx is 1. This is true if and 
only if 

Bmx = x. (3.32) 
Hence ,u = 1 is an eigenvalue of Bm, and we have p(B") 2 1. Since r(B) = 1 ,  

1 < p(Bm) = pm(B) 6 rm(B) = 1. (3.33) 
Consequently B is spectral and the spectrality of A follows. 

Since the degree of the minimal polynomial of an n-square matrix does 
not exceed n, we may conclude the following. 

COROLLARY 4 An n-square matrix is spectral i f  and only ifr(A")= rn(A). 
At this point it seems natural to ask whether in general an equality of the 

form r(Am) = rm(A), for some rn < n, implies spectrality. In general, the 
answer is negative even for the case m = n - 1 ,  as can be seen from the 
example 

0 0 0 0 0 0  

A = ( ;  p ;), A ' = ( P  ; ;). (3.34) 

Clearly p(A) = 0 and it can be verified that r ( ~ ~ )  = r 2 ( ~ )  = 4. 
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SPECTRAL MATRICES 325 

Another result which follows immediately from Theorems 2 and 3 is @ven 
below. 

COROLLARY 5 If r(Am) = rm(A) for some m with m 2 p, where p is the 
degree of the minimalpolynomial of A, then r ( ~ 9  = rk(A)  for all k. 

An additional result can be derived from Corollaries 2 and 4. 

COROLLARY 6 For n = 2, A is normal i f  and only i f r ( ~ ~ )  = r 2(~). 
We remark that Corollary 6 can be obtained directly by geometrical 

reasoning, using results of A. Brown [2]. 
Using Theorem 2 and Corollary 4 we prove our next theorem. 

THEOREM 4 Let A, with eigenualues pi, . . ., h, be unitarily similar to a 
matrix of  the form 

Q = diagOll,. . ., P I )  8 C ,  ( C  = Cn-~Xn-d, (3.35) 

so that at least one of the eigenvalues p,, . . ., pl, is on the spectral circle 
Izj = p(A). Let m be an integer such that m 2 n - I. Then A is spectral if 
and only if 

r(Am) = rm(A). (3.36) 

Proof I f  A is spectral, then (3.36) holds by Theorem 2. Conversely, 
suppose A is unitarily similar to a matrix Q of the form (3.39, and that (3.36) 
holds. Since Q = U*AU, we have Q"' = U*AmU, and by (1.12) and (3.36) 

r(Qm) = rm(Q>. (3.37) 
In addition 

Qm = diag@T, . . ., p?) f Cm. (3.38) 

Thus by (3.37) and (1.10) 

max{pm(Q), r(Cm)) = r(Qm) = rm(Q) = max(pm(Q), rm(C)>. (3.39) 

If 
rm(Q> = rm(C> > pm(Q), (3.40) 

then by (3.39) we also have 

r(Qm) = r ( c m )  > pm(Q>, (3.41) 

from which 
r(Cm) = rm(C). (3.42) 

Since C is (n - [)-square and m > n - I, it follows from Theorem 3 that C 
is spectral; hence r (C)  = p(C) < p(Q). This contradicts (3.40), so we must 
have 

rm(Q) = pm(&) 2 rm(C). (3.43) 

This leads to 

r ( c 9  < rk(C') < P ~ ( Q ) ,  k = 1 ,  2, 3 , .  . ., (3 -44) 
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326 M. GOLDBERG, E. TADMOR AND G. ZWAS 

and for k = n we obtain 

r ( Q V  mu{pn(Q>,  r(Cn)} = PYQ) = max{pn(Q), rn(C)l = rn(Q). (3.45) 
By  Corollary 4, Q is spectral. Hence A is spectral and the theorem follows. 

Combining Theorems 1 ,2  and 4, we may derive yet another final result. 

COROLLARY 7 Let A have eigenvalues A,, . . ., A,, ordered as in (2.3), and 
let m be an integer such that m >, n - s. Then A is spectral if and only if A 
is unitarily similar to a triangular matrix T = A 8 B of the form (2.4) and 
r(Am) = rm(A). 

The above results tend to show that the numerical radius can be useful 
in various applications. It is hoped that further research will actually bear 
this out. 
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